
Julia Awareness for
Scientific Computing

QuEST Global

Velleshala Sudheer

Scientific Computing is an essential part in multiple disciplinary fields of modern
engineering; it needs extraordinary computational capabilities to solve complex issues
arising in day to day development and application of models and simulation. There are many
supporting tools and one such newly evolving tool is Julia.

1. Abstract

2. Introduction

3. Problem Statement

4. Proposed Solution

5. Applicable areas

6. Case studies

7. Conclusion

8. References

9. Author Profile

4.2. Multiple dispatch

4.3. Type inference

4.4. Just-In-Time

4.5. Low Level Virtual Machine

4.1. Features of Julia

01

01

01

02

03

05

08

08

08

 02

 03

 03

 03

 02

© 2016, QuEST Global Services

1. ABSTRACT

Today's scientific world is in need of high technical computing capabilities to solve complex engineering
applications. Depending on complexity, each application may involve usage of combination of two or
more dynamic platforms like MATLAB, R, C and C++, etc., to achieve the desired functionality and solve
the complex problem. So there is always a need to carry out the whole functionality within one platform.
Julia, a newly emerging fast technical computing dynamic language, can cater for all the technical
computational requirements. Julia can, not only call other C functions but also builds its required libraries
and packages in its own language. Moreover Julia is an open-source language.

2. INTRODUCTION

Scientific or technical computing is very much vital in many complex engineering applications, applied
math and science. It has a huge scope with numerous computing languages. Among them, FORTRAN,
the most conventional Static Programming Language, which was used in numeric and scientific
computing language and in converting a high level programming language to a lower level. FORTRAN
was a dominant language with remarkable high performance in many engineering areas. C can also be
considered as a static language. Both deliver high performance for complex engineering needs. Other
computing languages that evolved over the years include MATLAB, R, Mathematica, Octave, Python
and SCILAB. All are written in high level language which, at runtime, executes many common
programming behaviors. They are known as Dynamic Programming Languages. These languages don't
specify the data type like int, float, doubles. etc., which is in contrast with the Static Programming
language. The dynamic programming languages provide high convenience and productivity but at the
cost of lacking in performance while static languages hold their possession in handling computationally-
exhaustive problems for performance but at the cost of lack of productivity. Different applications require
different programming choices or a combination of two or more:

► Statistics ➞ R.

► Linear Algebra ➞ MATLAB.

► String Processing ➞ Perl

► General Programming ➞ Python, Java

► Performance, Control ➞ C, C++, Fortran

As numerical computing requires in-built functionalities from library, internal implementation depends on
either using the same or different computing language. Retrofitting is not possible. Consequently, there
might be some incompatibilities between the programming choices. So in these situations, there is a
need of a new dynamic language that caters to the need of both performance and productivity. Julia can
be considered as a substitute for existing technical languages. Julia caters to all the requirements and
allows to program in a single langauage.

3. PROBLEM STATEMENT

Both the existing Dynamic and Static Computing Languages cater to many challenging areas of
numerical technical computing.

Julia Awareness for Scientific Computing

1
© 2016, QuEST Global Services

2

 ♦Unfortunately both have missed out substantially on performance and productivity and the end
 user is forced to compromise between convenience and performance.

4. PROPOSED SOLUTION

The solution for fast high level system for technical computing is writing the required libraries in one
language. For such a requirement, Julia can be considered as a newly emerging fast Dynamic computing
language for technical computing. Julia's base library is largely written in Julia itself, also making use of
C, C++ and Fortran libraries extensively. These libraries cater to all the needs linear algebra, Signal
Processing, String Processing and random number generation.
Many fields, such as mechanical engineering, scientific computing, linear algebra, and computational
biology, have massive potential for parallelization and a good fit with Julia's strengths. Julia is very much
similar to other technical environments.

Julia provides a
► Compiler
► Distributed parallel execution
► Numerical accuracy
► An extensive mathematical function library

4.1. FEATURES OF JULIA

► Multiple Dispatch: It's a feature of OOPS, where a function can be dynamically dispatched
 based on runtime of more than one argument.
► Good performance achieved using type inference, approaching that of statically compiled
 languages like C.
► Julia can call C functions directly.
► Julia is designed for parallelism and distributed computation.
► Julia allows co-routines.
► User defined types in Julia are as fast and compact as built-ins.
► Built-in package manager is available.
► Julia has Powerful shell-like capabilities for managing other processes.
► It is free and open source, licensed under MIT (Massachusetts Institute of Technology).
► Julia makes use of LLVM (Low-Level virtual Machine) based just-in-time compilation i.e.,
 Dynamic translation.
► Provided LISP (LISt Processor)-like macros and other meta programming abilities.
► Julia provides a wide range of packages catering to numerous engineering applications.

4.2. MULTIPLE DISPATCH

Generally functions are named based on their purpose. Sometimes these functions may be
named similarly, even though the functionality is different. So calling the desired functions
becomes puzzled. Multiple dispatch is a process in which a suitable method among several
function implementations is dispatched based on run-time type. Multiple dispatch dynamically
dispatches or invokes to the implementing method based on the number and datatype of
arguments. Basically it is a prime characteristic of Object Oriented Programming.

© 2016, QuEST Global Services

Julia Awareness for Scientific Computing

3

 ♦ Dispatch can be dynamic and static. Static dispatch is the implementation of polymorphic
operation at compile time. Multiple dispatch are very much useful in object oriented applications
like GUI programming.

4.3. TYPE INFERENCE

Automatic deduction of type of a variable or value is known as Type Inference. This ability to
automatically infer type from the program makes the programming tasks easier. In dynamically
typed languages the type is known at run time. Whereas, in statically typed language, the type of
an expression is known only at compile time.

4.4. JUST-IN-TIME COMPILATION

Compilation at the time of execution is just-in time compilation and is also called as dynamic
translation. This is in contrast to the conventional procedure of compilation prior to execution. It
involves translation to machine code. JIT compilation can yield faster execution than static
compilation. JIT compilation is applicable particularly to dynamic capacities. It ensures faster
execution of code. Common implementation of JIT compilation includes ahead of time
compilation to byte code and then JIT compilation to machine code. JIT compiler compiles the
byte code dynamically into machine language. Hence, the execution is faster and is preserved for
further use and excludes recompilation. Bytecode is obtained from source code and interpreted
prior to JIT compilation.

4.5. LOW LEVEL VIRTUAL MACHINE

Compilation system involves interpretation, compilation and execution. Interpretation and
compilation forms the Intermediate levels. LLVM provides intermediate levels for the complete
compilation system which will be converted and linked into machine-dependent assembly code. It
is compiler infrastructure designed as a set of reusable libraries with well-defined interfaces.

5. APPLICABLE AREAS

Many engineering areas require efficient computational platforms for solving complex engineering
problems. In order to cater to the requirement, numerous computing languages have evolved. Both static
and dynamic languages have been serving these needs for years. These languages have provided
accurate results with high convenience efficiently but unfortunately, each have missed out in terms of
performance and productivity. Consequently, there was a need for dependency on two or more
languages for accomplishing a single application. Julia is one such language which caters to all the
requirements and allows the programmer to work in a single langauage. Julia has a very efficient
capability, i.e., it packages. These packages are developed in Julia script itself, which makes the
execution faster. Julia covers numerous engineering areas with its functionalities. Some of them are
listed below.

► Signal Processing:
 ♦ DSP.jl- Package provides a number of common DSP routines in Julia. Signal processing

© 2016, QuEST Global Services

Julia Awareness for Scientific Computing

functions include Filtering, Spectrograms/Periodograms, Window functions

► Image Processing:

 ♦ Images.jl - An image processing library forJulia.
 ♦Testimages.jl - Testimages like mandrill.
 ♦Other useful packages- Color.jl, FixedPointNumbers.jl, ImageView.jl.
 ♦Functions include imread, show, properties, data, copyproperties, colordim, colorspace,
 pixelspacing

► Database:
 ♦DataFrames.jl- Read in delimited files into Julia. It also supports reading in gzippped files.
 ♦ODBC.jl - provides functionality to connect to a database using a Data Source Name (DSN).
 Functions include readtable, writetable, ODBC.connect, query, advancedconnect.

► Statistical:
 ♦Statsbase.jl - Basic statistics for Julia.
 ♦Distributions.jl - A Julia package for probability distributions and associated functions.

 Functions include:

 ♦Moments (e.g mean, variance, skewness, and kurtosis), entropy, and other properties.
 ♦Probability density/mass functions (pdf) and their logarithm (logpdf).
 ♦Moment generating functions and characteristic functions.
 ♦Sampling from population or from a distribution.
 ♦Maximum likelihood estimation.

► MultivariateStats.jl

 Functions include:

 ♦Linear Least Square Regression
 ♦Ridge Regression
 ♦Data Whitening
 ♦Principal Components Analysis (PCA)
 ♦Canonical Correlation Analysis (CCA)
 ♦Classical Multidimensional Scaling (MDS)
 ♦Linear Discriminant Analysis (LDA)
 ♦Multiclass LDA
 ♦Independent Component Analysis (ICA), Fast ICA.

Julia has a rich package facility as listed above, which can cater to every technical need. Some of the
applicable areas are as follows:

 ♦It is a serious platform for big data applications because of Julia's elegance, power and thriving
 community [3].
 ♦Grid Simulation solver provided by IBFS.jl enables grid computing facility. Grid is a distributed
 system with non-interactive workloads that involve a large number of files.

4
© 2016, QuEST Global Services

Julia Awareness for Scientific Computing

5

 ♦Julia can be compiled and built on several ARMv6 or ARMv7 / Cortex A15 Samsung
 Chromebooks running Ubuntu Linux under Crouton and Raspberry Pi systems. Some are
 successful and some failed with technical issues.
 ♦Marketing vendors can estimate their business statistics based on the rate at which their online
 subscribers/customers visit their site and wanting to use their products. This application involves
 handling of huge data.
 ♦Suitable for applications involving communication between various types of data acquisition and
 control equipment like DNP3 (Distributed Network Protocol).
 ♦Segregating different type of data based on their characteristics and features. For ex: guessing
 the age of a person based on the name, as naming style changes between generations.

6. CASE STUDY

Case study 1

Few cases studies have been implemented in Julia and performance analysis is compared with other
static and dynamic languages like C++ and MATLAB respectively. The case studies are illustrated below.
As an initial example, multiplication code with larger iterations was developed in both MATLAB and Julia.
The comparative tabular form showing execution time taken by Julia and MATLAB for different
multiplication tables is as shown below:

Table 1. Mulitplication Table comparing Julia with Matlab.

The comparative graphical analysis for execution time for Julia and MATLAB is shown below. From the
graph, it can be clearly inferred that even though the iterations are increasing rapidly, the execution time
for Julia is very less when compared to MATLAB.

Fig 1. Comparision graph between Julia and Matlab for Multiplication case study.

© 2016, QuEST Global Services

Julia Awareness for Scientific Computing

6

Case study 2

Refrigeration case was considered as another example, which tries to compare the performance. Julia
performance is compared with MATLAB and C++ by evaluating some parameters like Cooling, Power,
EER and Pressure of the cylinder. The comparison tabular form is as shown.

Table 1. Refrigeration test case comparing Julia with Matlab and C++.

The comparative graphical analysis for execution time for Julia, C++ and MATLAB is as shown. It can be
inferred that Julia is about 20X faster than MATLAB and C++ is 6X faster than Julia.

Fig 2. Comparision graph between Julia, C++ and Matlab for refrigeration case study.

The same case study is extended with addition effort and implemented in a Graphical User Interface.
The figure below shows user controls like edit box, button and graph, which exemplify the GUI
capability of Julia.

© 2016, QuEST Global Services

Julia Awareness for Scientific Computing

7

Case Study 3

Another important case study is the Contribution Margin (CM) Tool. The portion of sales revenue that is
not spent by variable costs but contributes to the exposure of fixed costs is Contribution Margin.
Contribution Margin analysis is a measure of operating leverage. GUI is created for implementing the CM
TOOL in Julia. This tool is useful in analysis of revenue depending on incoming and outgoing products in
an organization. The figure below exemplifies how analysis is carried out with the help of graphical
analysis. The front end view of CM Tool is also shown.

Case study 4

Comparison between Julia and MATLAB is as shown below.

© 2016, QuEST Global Services

Julia Awareness for Scientific Computing

8
© 2016, QuEST Global Services

A similar kind of tabular comparison is as shown.

7. CONCLUSION

For complex engineering computations, Julia's rich package can cater to various industrial needs. It
overcomes the need for relying on other languages for acquiring different functionalities. Various
experiments are carried out implementing different application in Julia and other static and dynamic
languages like C++ and MATLAB. The inference from the above experiment is, Julia is about 20X faster
than MATLAB and C++ is 6X faster than Julia.

8. REFERENCES

1. https://github.com/svaksha/Julia.jl/blob/master/HPC.md
2. https://github.com/JuliaLang/julia/blob/master/README.arm.md
3. http://istc-bigdata.org/index.php/open-big-data-computing-with-julia/

9. AUTHOR PROFILE

Velleshala Sudheer is a Senior Engineer working in the Power Generation DC
at QuEST Embedded and Engineering Software. He is an expert in areas like
speech and audio processing, satellite tracking and aeronautics. His industrial
experience along with his expertise in Julia, MATLAB and DSP environment
has made this paper possible.
Sudheer holds a bachelor's degree in Electronics and Communication
Engineering, a master's degree with emphasis in Signal Processing and
Diploma in Embedded systems.

Julia Awareness for Scientific Computing

© 2015, QuEST Global Services

www.quest-global.com

 © 2016, QuEST Global Services

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11

