
real-time face
tracking with
GPU acceleration

QuEST Global

Midhun M
Neethu K Chandran
Preetha Joy

Real-time tracking of multiple faces in high resolution videos involve three basic tasks
namely initialization, tracking and display.

0.1 Abstract

0.2 Introduction

0.3 Methodology

0.4 Need for performance enhancement

0.6 CUDA Implementation Details

0.7 Experimental Results

0.8 Performance Figures

0.9 Future Enhancements

10 References

0.5 NVIDIA CUDA programming model

01

01

01

03

 04

 05

 06

 06

 06

 03

© 2015, QuEST Global Services

Abstract

 Fast and robust tracking of multiple faces is
receiving increased attention from computer
vision researchers as it finds potential
applications in many fields like video
surveillance and computer mediated video
conferencing. Real-time tracking of multiple
faces in high resolution videos involve three
basic tasks namely initialization, tracking and
display. Among these, tracking is quite compute
intensive as it involves particle filtering that won't
yield a real time performance if we use a
conventional CPU based system alone. While
looking forward a design that optimizes the
system for an appreciable real - t ime
performance, calls for the use of compute
efficient platforms like GPU for compute
intensive tasks along with conventional CPU.
This paper discusses our heterogeneous design
model which combines convent iona l
programming for CPU efficient tasks and the
nVIDIA CUDA for GP-GPU that implements the
compute intensive tasks.

Keywords: Stream processing, GPU, GP-

GPU, CUDA, Particle filtering, video tracking,
real-time systems.

1. Introduction

 Analysis of human faces has been an active
research topic in computer vision and image
processing for quiet a long time. This strong
interest is driven by some promising applications
such as surveillance and security monitoring,
advanced human-machine interface, video
conferencing and virtual reality. Generally
speaking, major research areas include face
detection, tracking and recognition, face
animation, expression analysis, lip reading, etc.
As the basis for all other related image analysis
of human faces, face detection and tracking are
of great importance.

Recently, there have been considerable
research achievements in detection, recognition

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

1

and tracking of human faces. A number of face
detection and recognition algorithms can be
found in a literature survey. Instead of detecting
human faces in each frame independently, face
tracking utilizes temporal correlation to locate
them. The idea of introducing face tracking
instead of doing repeated detection is to reduce
the tracking time and produce real time output.

Our objective is to develop a real-time face
tracker that tracks multiple faces simultaneously
on subsequent video frames with maximum
stability. For this a histogram based face tracking
algorithm was chosen. Finally to achieve real time
performance the algorithm was redesigned to a
heterogeneous model using NVIDIA CUDA, that
can run on a Graphics Processing Unit.

2. Methodology

 As mentioned, a face tracker consists of two
major parts detection and tracking. Detection will
detect all the faces within a particular frame. The
tracking part tracks the detected faces in the
coming subsequent frames until the face leaves
out of the frame. Detection is used for detecting
new faces when it pops up onto the video frame.
Hence forth detection need to be done only after n
number of frames, based on an assumption that a
new face will not pop up and leave all of a sudden.
When faces in a frame are detected, faces which
are already being tracked are allowed to continue
the tracking process and newly detected faces
are added on to the set of currently tracked faces
and are tracked in the coming frames.

For face detection and face tracking there are a
number of well defined proven algorithms
available. The frontal face detection using Viola

[3]and Jones boosting algorithm is used for
detection. Face tracking which is our prime area
of interest is implemented using Gray scale
histogram method. This algorithm have many
advantages over the other conventional
algorithms, as it is robust to partial occlusion,
rotation and scale invariant and calculated
efficiently.

The entire operations of the application can be

© 2015, QuEST Global Services

2

grouped into initialization, tracking and display.
Detecting new faces and the extraction of
reference histogram of the grey scale image falls
into the initialization phase. In tracking the
detected faces are tracked. Tracking makes use
of particle filtering based on condensation

[6]algorithm , which involves the particle selection,
error diffusion, and weighting. Weighting in
particle filtering is highly compute intensive
portion and hence is our area of focus for
performance enhancement. The display section
handles the display of the output on to the
screen. Before displaying, average of the
particles from particle filtering is computed in-
order to get the most appropriate position on the
screen.

2.1 Particle Filtering

Particle filtering, also known as sequential
Monte Carlo method (SMC) is sophisticated
model estimation techniques based on
simulation. Sampling importance resampling
(SIR) is a very commonly used particle filtering
algorithm. The Sampling-importance resampling

(SIR) algorithm aims at drawing a random
sample from a target distribution π. First, a
sample is drawn from a proposal distribution q,
and then from this a smaller sample is drawn with
sample probabilities proportional to the
importance ratios π/q. For a finite set of particles,
the algorithm performance is dependent on the
choice of the proposal distribution. The optimal
proposal distribution is given as the target
distribution. However, the transition prior is often
used as importance function, since it is easier to
draw particles (or samples) and perform
subsequent importance weight calculations.
Sampling Importance Resampling (SIR) filters
with transition prior as importance function are
commonly known as bootstrap filter and

[6]condensation algorithm . The probabilistic
approach of condensation algorithm provides
significant robustness, as several possible states
of the system are tracked at any given moment.

A common problem with this kind of
probabilistic approach is its significant
computational requirements. As the number of
particles becomes large, the algorithmic
calculation also increases. Fortunately, particle
filters are easy to parallelize; they require high
arithmetic throughput (as opposed to low
latency), and have low global communication and
storage costs. A good parallelization strategy can
bring robustness of this algorithm to real-time
applications.

2.2 Histogram-based Particle Filtering

A histogram is a method of quantizing the
colors in the image. A color in the (R, G, B)-space
consists of three values R, G and B, and in the
histogram, the correlation between these values
have to be retained. Therefore, it is not good
enough to generate three histograms of the
separate color channels (one for each color
channel), but every (R, G, B)-triple will have to be
"binned" as a whole. So the three channels can
be combined together to get a single channeled
gray scale image.

The proposed tracker employs the

Figure 1. Block diagram of face tracking application

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

© 2015, QuEST Global Services

3

Bhattacharya distance to update the priori
distribution calculated by the particle filter.
Bhattacharya coefficient is a popular method
that uses histograms to correlate images. It
defines a normalized distance among target
histograms and histograms of candidate. It is
expected that the maximum of this function gives
the correct match.

3 Need For Performance Enhancement

For steady tracking of multiple faces in a real
time video, we should be able to do tracking of
faces on each and every frame without missing
any frames in between. For this to happen in real
rime, it is necessary that tracking of faces in one
frame should be completed before capturing the
next frame. Gray scale histogram based face
tracking algorithm is highly efficient and robust,
but at the same time it is highly compute
intensive. So as the number of faces to be
tracked in a frame increases the process of
tracking faces in a single frame will consume
more time and hence result in a low FPS video
output. To achieve real time tracking of multiple
faces using gray scale histogram method, it is
indeed necessary to reduce the execution time
of the tracking algorithm. A possible way of
effectively reducing the time is to modularize the
compute intensive portions in the algorithm and
execute each module in parallel. Fortunately in
histogram based tracking the compute intensive
portions are very much parallelizable i.e. they
have very low data interdependencies.

Once we are all set to parallelize the
algorithm, we need an efficient stream processor
which can execute the parallelized portions of
the algorithm.Our interest mainly is bound
across graphics chips, because they are
currently the most powerful and cheap
computational hardware available. These chips
have gone from fixed-application peripherals to
modern, powerful, and programmable general
purpose processors. Unfortunately, the GPU
uses an entirely different and unfamiliar
programming model. So a very thorough know

how of the programming model as well as the
details of the underlying architecture is of at most
importance for programming efficiently in GPU.
NVIDIA Corp. provides now a full architecture
based on the Stream processing model called
CUDA (Compute Unified Device Architecture).
CUDA has a C like programming model which
helps a normal C/C++ programmer to write
programs that can harness the immense power of
the GPU.

4 NVIDIA CUDA programming model

NVIDIA CUDA (Compute Unified Device
Architecture) is a hardware and software
architecture that allows the GPU to be viewed as a
data-parallel computing device that operates as a
coprocessor to the main CPU (the host).

At the hardware level, the GPU is a collection of
multiprocessors, with several processing
elements in each. Each processor in the
multiprocessor executes the same instruction in
every cycle. Each can operate on its own data,
which makes each a SIMD processor.
Communication between multiprocessors is only
through the device memory, which is available to
all cores of the multiprocessors. The processing
elements of a multiprocessor can synchronize
with one another, but there is no direct
synchronization mechanism between the
multiprocessors. The GPUs provides only single-
precision floating point numbers and 32-bit
integers on native numeric data types, though this
may change in near future.

For the programmer, the CUDA consists of a
collection of threads running in parallel and all
threads execute a single program called the
kernel. Kernels have a Single Program Multiple
Data (SPMD) programming model that allows
limited divergence in execution. A part of the
application that is executed many times, but
independently on different elements of a dataset,
can be isolated into a kernel that is executed on
the GPU in the form of many different threads.

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

© 2015, QuEST Global Services

4

Kernels run on a grid, which is an array of blocks;
and each block is an array of threads.

The kernel is the core code to be executed on

each thread. Using the thread and block IDs,
each thread can perform the kernel task on
different data. Since the device memory is
available to all the threads, it can access any
memory location. The performance improves
with the use of shared memory which can be
accessed in a single clock cycle. In contrast, the
global or device memory access takes 200-400
cycles. Read only texture memory optimized for
2-D texture fetch and constant memory
assigned by the CPU are also available. Their
access is slow but the internal caching
mechanism reduces the effective access times
for coherent access. The hardware architecture
allows multiple instruction sets to be executed
on different multiprocessors. The current CUDA
programming model, however, cannot assign
different kernels to different multiprocessors,
though this may be simulated using conditionals.

Algorithm:

1. Capture the input frame.
2. Detect faces in the frame.
3. Check if the detected face is

a new face. If the face is not
newly detected go to step 6.

4. Do template extraction. Find
histogram of the face.

5. Do particle initialization
with current location and
weight as Zero

6. Copy the particle information
corresponding to all faces and
frame information, to the GPU
memory for executing the steps
below.

7. Do particle selection, add
Gaussian noise.

8. Calculate Histogram for each
particle.

9. Calculate the Bhattacharya
similarity coefficient between
the reference histogram and
calculated histogram.

10.Assign weight for each
particle according to
Bhattacharya similarity
coefficient.

11.Copy back the weight
information of each particle
to the CPU.

12.Sort the particle according to
weight.

13.Draw rectangle around the face
along the particle with
maximum weight and display on
screen.

5 CUDA Implementation Details

Our application uses CUDA implementation in
the weight calculation step of the particle filtering
algorithm. Weight calculation is the most time
consuming portion in the algorithm. And it can be Figure 2. Architectural overview of the tracker using GPU.

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

© 2015, QuEST Global Services

5

made to execute in parallel on the GPU. The
following are the steps involved in the GPU
implementation of weight calculation.

1. At a particular frame (frame 0), the reference
histogram is copied to the device memory.
This input stream doesn't change during the
tracking process, so it is kept in device
memory and used in each iteration of the
algorithm.

2. For each input frame (frame t), the frame buffer
and the particle information is copied to the
device memory.

3. The kernel function is invoked and is executed
over the blocks and threads. Each thread
calculates the gray-scale histogram based on
corresponding particle information. The
weight of the particle is calculated from the
calculated histogram and the reference
histogram using the Bhattacharya distance.
The result is then stored in the device memory.

4. The auto regressive dynamics used for the
new state calculation is also done inside the
kernel. The result of the calculation is used to
update the device buffer with the new particle
information.

5. The host recovers from device memory the
output stream containing the weight of every
particle and the updated particle state. The
algorithm continues its normal flow of
execution until a new video frame and stream
of particles requires processing.

As a first level of implementation we did only a
particle level parallelism. Accordingly only
particles corresponding to one face was
processed simultaneously in parallel. All the
faces were iterated from the CPU one after the
other, to compute the weight corresponding to
the particles of each face. To achieve better
performance, constant memory and texture
memory were used instead of the device global
memory. Texture memory and constant memory
are cached memory and can hence account for
performance enhancement if used judiciously.
The Gaussian noise used for state transition

remains constant for the entire application, so it is
copied only once and is stored in device's
constant memory. But the input stream which
varies with each frame in the tracking process is
copied to the device buffer and is stored in texture
memory for each iteration of the tracking process.

As an enhancement from the initial
implementation, a face level parallelism was then
implemented to utilize the maximum power of the
GPU. If we are doing only particle level
parallelism, we will only be using very small
number of the underlying processing cores in the
GPU. In order to overcome this shortcoming we
parallelize in a face cum particle level. In this
implementation all the particles corresponding to
all the faces in a frame are executed
simultaneously and will account for using a large
number of processing cores of the GPU. Since
there are no dependencies between different
particles available it doesn't raise much trouble in
the implementation. According to this we transfer
the entire frame and all the particle information
corresponding to all the tracking faces at once
into the GPU and process all of them
simultaneously in parallel. A face cum particle
level parallelism resulted in an immense
performance gain over the particle level
pa ra l l i sm . Acco rd ing t o t he cu r ren t
implementation as the number of faces in a frame
increases the performance of the GPU
implementation goes on increasing when
mapped to its CPU implementation.

6 Experimental results

Figure 3. A normal tracking in progress.

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

© 2015, QuEST Global Services

6

Figure 4. Tracking of rotated faces.

Figure 5. Tracking of multiple faces.

7 Performance figures

Figure 6: The performance gain in terms of FPS for
 CPU Vs GPU as the number of faces increases

8 Future Enhancements

As of now the video tracking serves the
purpose of tracking faces in video. To add as an
enhancement to the existing tracker we plan to
give support for face recognition. In face
recognition it would be possible to identify a
particular face from a group of people. This can be
done by cross checking the detected faces with
the face to be recognized which we have in our
database, and then tracking the matching face.
This can be of high importance in video
surveillance and security as it helps to recognize
a person among a group of people and track his
movement. Regarding the performance
improvement, we are planning to port the particle
sorting step to GPU, which we hope will give
considerable performance gain.

9 References

[1] NVIDIA, CUDA Programming Guide 1.1

[2]Lozano O. L., Otsuka K. (2008) Real-time

Visual Tracker by Stream Processing, In
Journal of Signal Processing Systems, July
2008 accessible at:

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

© 2015, QuEST Global Services

7

http://www.springerlink.com/content/pk22n1
632859082k/fulltext.pdf

[3] Viola, P., & Jones, M. (2001). Rapid object
detection using a boosted cascade of simple
features. In Proc. of the IEEE computer
society conference on computer vision and
pattern recognition (Vol. 1, pp. 511–518).

[4] Ahlberg, J. (2001). Candide-3 – an updated
parameterized face. Technical report, Dept.
of Electrical Engineering, Linköping
University.

[5] Arulampalam, S., Maskell, S., Gordon, N.
J., & Clapp, T. (2002). A tutorial on particle
filters for on-line nonlinear/non-Gaussian
Bayesian tracking. IEEE Transactions of
Signal Processing, 50(2), 174–188,
February.

[6] Condensation – conditional density
propagation for visual tracking, Isard and
Blake, Int. J.Computer Vision, 1998

 Real-time Face Tracking with GPU Acceleration

 Real-time Face Tracking with GPU Acceleration

© 2015, QuEST Global Services

www.quest-global.com

 © 2015, QuEST Global Services

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

