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Real-time tracking of multiple faces in high resolution videos involve three basic tasks 
namely initialization, tracking and display. 
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Abstract

  Fast and robust tracking of multiple faces is 
receiving increased attention from computer 
vision researchers as it finds potential 
applications in many fields like video 
surveillance and computer mediated video 
conferencing. Real-time tracking of multiple 
faces in high resolution videos involve three 
basic tasks namely initialization, tracking and 
display. Among these, tracking is quite compute 
intensive as it involves particle filtering that won't 
yield a real time performance if we use a 
conventional CPU based system alone. While 
looking forward a design that optimizes the 
system for  an appreciable real - t ime 
performance, calls for the use of compute 
efficient platforms like GPU for compute 
intensive tasks along with conventional CPU. 
This paper discusses our heterogeneous design 
model  which combines convent iona l  
programming for CPU efficient tasks and the 
nVIDIA CUDA for GP-GPU that implements the 
compute intensive tasks.

 
Keywords: Stream processing, GPU, GP-

GPU, CUDA, Particle filtering, video tracking, 
real-time systems. 

1. Introduction

 Analysis of human faces has been an active 
research topic in computer vision and image 
processing for quiet a long time. This strong 
interest is driven by some promising applications 
such as surveillance and security monitoring, 
advanced human-machine interface, video 
conferencing and virtual reality. Generally 
speaking, major research areas include face 
detection, tracking and recognition, face 
animation, expression analysis, lip reading, etc. 
As the basis for all other related image analysis 
of human faces, face detection and tracking are 
of great importance. 

Recently, there have been considerable 
research achievements in detection, recognition 
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and tracking of human faces. A number of face 
detection and recognition algorithms can be 
found in a literature survey. Instead of detecting 
human faces in each frame independently, face 
tracking utilizes temporal correlation to locate 
them. The idea of introducing face tracking 
instead of doing repeated detection is to reduce 
the tracking time and produce real time output. 

Our objective is to develop a real-time face 
tracker that tracks multiple faces simultaneously 
on subsequent video frames with maximum 
stability. For this a histogram based face tracking 
algorithm was chosen. Finally to achieve real time 
performance the algorithm was redesigned to a 
heterogeneous model using NVIDIA CUDA, that 
can run on a Graphics Processing Unit.

 
2. Methodology

 As mentioned, a face tracker consists of two 
major parts detection and tracking. Detection will 
detect all the faces within a particular frame. The 
tracking part tracks the detected faces in the 
coming subsequent frames until the face leaves 
out of the frame. Detection is used for detecting 
new faces when it pops up onto the video frame. 
Hence forth detection need to be done only after n 
number of frames, based on an assumption that a 
new face will not pop up and leave all of a sudden. 
When faces in a frame are detected, faces which 
are already being tracked are allowed to continue 
the tracking process and newly detected faces 
are added on to the set of currently tracked faces 
and are tracked in the coming frames. 

For face detection and face tracking there are a 
number of well defined proven algorithms 
available. The frontal face detection using Viola 

[3]and Jones  boosting algorithm is used for 
detection. Face tracking which is our prime area 
of interest is implemented using Gray scale 
histogram method. This algorithm have many 
advantages over the other conventional 
algorithms, as it is robust to partial occlusion, 
rotation and scale invariant and calculated 
efficiently. 

The entire operations of the application can be 
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grouped into initialization, tracking and display. 
Detecting new faces and the extraction of 
reference histogram of the grey scale image falls 
into the initialization phase. In tracking the 
detected faces are tracked. Tracking makes use 
of particle filtering based on condensation 

[6]algorithm , which involves the particle selection, 
error diffusion, and weighting. Weighting in 
particle filtering is highly compute intensive 
portion and hence is our area of focus for 
performance enhancement. The display section 
handles the display of the output on to the 
screen. Before displaying, average of the 
particles from particle filtering is computed in-
order to get the most appropriate position on the 
screen.  

 

2.1 Particle Filtering 
 

Particle filtering, also known as sequential 
Monte Carlo method (SMC) is sophisticated 
model estimation techniques based on 
simulation. Sampling importance resampling 
(SIR) is a very commonly used particle filtering 
algorithm. The Sampling-importance resampling 

(SIR) algorithm aims at drawing a random 
sample from a target distribution π. First, a 
sample is drawn from a proposal distribution q, 
and then from this a smaller sample is drawn with 
sample probabilities proportional to the 
importance ratios π/q. For a finite set of particles, 
the algorithm performance is dependent on the 
choice of the proposal distribution. The optimal 
proposal distribution is given as the target 
distribution. However, the transition prior is often 
used as importance function, since it is easier to 
draw particles (or samples) and perform 
subsequent importance weight calculations. 
Sampling Importance Resampling (SIR) filters 
with transition prior as importance function are 
commonly known as bootstrap filter and 

[6]condensation algorithm . The probabilistic 
approach of condensation algorithm provides 
significant robustness, as several possible states 
of the system are tracked at any given moment. 

A common problem with this kind of 
probabilistic approach is its significant 
computational requirements. As the number of 
particles becomes large, the algorithmic 
calculation also increases. Fortunately, particle 
filters are easy to parallelize; they require high 
arithmetic throughput (as opposed to low 
latency), and have low global communication and 
storage costs. A good parallelization strategy can 
bring robustness of this algorithm to real-time 
applications. 

2.2 Histogram-based Particle Filtering 

A histogram is a method of quantizing the 
colors in the image. A color in the (R, G, B)-space 
consists of three values R, G and B, and in the 
histogram, the correlation between these values 
have to be retained. Therefore, it is not good 
enough to generate three histograms of the 
separate color channels (one for each color 
channel), but every (R, G, B)-triple will have to be 
"binned" as a whole. So the three channels can 
be combined together to get a single channeled 
gray scale image. 

The proposed tracker employs the 

Figure 1. Block diagram of face tracking application 
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Bhattacharya distance to update the priori 
distribution calculated by the particle filter. 
Bhattacharya coefficient is a popular method 
that uses histograms to correlate images. It 
defines a normalized distance among target 
histograms and histograms of candidate. It is 
expected that the maximum of this function gives 
the correct match. 

3 Need For Performance Enhancement  

For steady tracking of multiple faces in a real 
time video, we should be able to do tracking of 
faces on each and every frame without missing 
any frames in between. For this to happen in real 
rime, it is necessary that tracking of faces in one 
frame should be completed before capturing the 
next frame. Gray scale histogram based face 
tracking algorithm is highly efficient and robust, 
but at the same time it is highly compute 
intensive. So as the number of faces to be 
tracked in a frame increases the process of 
tracking faces in a single frame will consume 
more time and hence result in a low FPS video 
output. To achieve real time tracking of multiple 
faces using gray scale histogram method, it is 
indeed necessary to reduce the execution time 
of the tracking algorithm. A possible way of 
effectively reducing the time is to modularize the 
compute intensive portions in the algorithm and 
execute each module in parallel. Fortunately in 
histogram based tracking the compute intensive 
portions are very much parallelizable i.e. they 
have very low data interdependencies. 

Once we are all set to parallelize the 
algorithm, we need an efficient stream processor 
which can execute the parallelized portions of 
the algorithm.Our interest mainly is bound 
across graphics chips, because they are 
currently the most powerful and cheap 
computational hardware available. These chips 
have gone from fixed-application peripherals to 
modern, powerful, and programmable general 
purpose processors. Unfortunately, the GPU 
uses an entirely different and unfamiliar 
programming model. So a very thorough know 

how of the programming model as well as the 
details of the underlying architecture is of at most 
importance for programming efficiently in GPU. 
NVIDIA Corp. provides now a full architecture 
based on the Stream processing model called 
CUDA (Compute Unified Device Architecture). 
CUDA has a C like programming model which 
helps a normal C/C++ programmer to write 
programs that can harness the immense power of 
the GPU. 

4 NVIDIA CUDA programming model  

NVIDIA CUDA (Compute Unified Device 
Architecture) is a hardware and software 
architecture that allows the GPU to be viewed as a 
data-parallel computing device that operates as a 
coprocessor to the main CPU (the host). 

At the hardware level, the GPU is a collection of 
multiprocessors, with several processing 
elements in each. Each processor in the 
multiprocessor executes the same instruction in 
every cycle. Each can operate on its own data, 
which makes each a SIMD processor. 
Communication between multiprocessors is only 
through the device memory, which is available to 
all cores of the multiprocessors. The processing 
elements of a multiprocessor can synchronize 
with one another, but there is no direct 
synchronization mechanism between the 
multiprocessors. The GPUs provides only single-
precision floating point numbers and 32-bit 
integers on native numeric data types, though this 
may change in near future. 

For the programmer, the CUDA consists of a 
collection of threads running in parallel and all 
threads execute a single program called the 
kernel. Kernels have a Single Program Multiple 
Data (SPMD) programming model that allows 
limited divergence in execution. A part of the 
application that is executed many times, but 
independently on different elements of a dataset, 
can be isolated into a kernel that is executed on 
the GPU in the form of many different threads. 

 Real-time Face Tracking with GPU Acceleration 

 Real-time Face Tracking with GPU Acceleration 



© 2015, QuEST Global Services

4

Kernels run on a grid, which is an array of blocks; 
and each block is an array of threads.

 
The kernel is the core code to be executed on 

each thread. Using the thread and block IDs, 
each thread can perform the kernel task on 
different data. Since the device memory is 
available to all the threads, it can access any 
memory location. The performance improves 
with the use of shared memory which can be 
accessed in a single clock cycle. In contrast, the 
global or device memory access takes 200-400 
cycles. Read only texture memory optimized for 
2-D texture fetch and constant memory 
assigned by the CPU are also available. Their 
access is slow but the internal caching 
mechanism reduces the effective access times 
for coherent access. The hardware architecture 
allows multiple instruction sets to be executed 
on different multiprocessors. The current CUDA 
programming model, however, cannot assign 
different kernels to different multiprocessors, 
though this may be simulated using conditionals.

 

Algorithm: 

1. Capture the input frame. 
2. Detect faces in the frame. 
3. Check if the detected face is 

a new face. If the face is not 
newly detected go to step 6. 

4. Do template extraction. Find 
histogram of the face. 

5. Do particle initialization 
with current location and 
weight as Zero 

6. Copy the particle information 
corresponding to all faces and 
frame information, to the GPU 
memory for executing the steps 
below. 

7. Do particle selection, add 
Gaussian noise. 

8. Calculate Histogram for each 
particle. 

9. Calculate the Bhattacharya 
similarity coefficient between 
the reference histogram and 
calculated histogram. 

10.Assign weight for each 
particle according to 
Bhattacharya similarity 
coefficient. 

11.Copy back the weight 
information of each particle 
to the CPU. 

12.Sort the particle according to 
weight. 

13.Draw rectangle around the face 
along the particle with 
maximum weight and display on 
screen. 

5 CUDA Implementation Details
 

Our application uses CUDA implementation in 
the weight calculation step of the particle filtering 
algorithm. Weight calculation is the most time 
consuming portion in the algorithm. And it can be Figure 2. Architectural overview of the tracker using GPU. 
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made to execute in parallel on the GPU. The 
following are the steps involved in the GPU 
implementation of weight calculation. 

1. At a particular frame (frame 0), the reference 
histogram is copied to the device memory. 
This input stream doesn't change during the 
tracking process, so it is kept in device 
memory and used in each iteration of the 
algorithm. 

2. For each input frame (frame t), the frame buffer 
and the particle information is copied to the 
device memory. 

3. The kernel function is invoked and is executed 
over the blocks and threads. Each thread 
calculates the gray-scale histogram based on 
corresponding particle information. The 
weight of the particle is calculated from the 
calculated histogram and the reference 
histogram using the Bhattacharya distance. 
The result is then stored in the device memory. 

4. The auto regressive dynamics used for the 
new state calculation is also done inside the 
kernel. The result of the calculation is used to 
update the device buffer with the new particle 
information. 

5. The host recovers from device memory the 
output stream containing the weight of every 
particle and the updated particle state. The 
algorithm continues its normal flow of 
execution until a new video frame and stream 
of particles requires processing. 

As a first level of implementation we did only a 
particle level parallelism. Accordingly only 
particles corresponding to one face was 
processed simultaneously in parallel. All the 
faces were iterated from the CPU one after the 
other, to compute the weight corresponding to 
the particles of each face. To achieve better 
performance, constant memory and texture 
memory were used instead of the device global 
memory. Texture memory and constant memory 
are cached memory and can hence account for 
performance enhancement if used judiciously. 
The Gaussian noise used for state transition 

remains constant for the entire application, so it is 
copied only once and is stored in device's 
constant memory. But the input stream which 
varies with each frame in the tracking process is 
copied to the device buffer and is stored in texture 
memory for each iteration of the tracking process. 

As an enhancement from the initial 
implementation, a face level parallelism was then 
implemented to utilize the maximum power of the 
GPU. If we are doing only particle level 
parallelism, we will only be using very small 
number of the underlying processing cores in the 
GPU. In order to overcome this shortcoming we 
parallelize in a face cum particle level. In this 
implementation all the particles corresponding to 
all the faces in a frame are executed 
simultaneously and will account for using a large 
number of processing cores of the GPU. Since 
there are no dependencies between different 
particles available it doesn't raise much trouble in 
the implementation. According to this we transfer 
the entire frame and all the particle information 
corresponding to all the tracking faces at once 
into the GPU and process all of them 
simultaneously in parallel. A face cum particle 
level parallelism resulted in an immense 
performance gain over the particle level 
pa ra l l i sm .  Acco rd ing  t o  t he  cu r ren t  
implementation as the number of faces in a frame 
increases the performance of the GPU 
implementation goes on increasing when 
mapped to its CPU implementation. 

6 Experimental results  

Figure 3. A normal tracking in progress. 
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Figure 4. Tracking of rotated faces. 

Figure 5. Tracking of multiple faces. 

7 Performance figures 

Figure 6: The performance gain in terms of FPS for 
                CPU Vs GPU as the number of faces increases 

8 Future Enhancements
 

As of now the video tracking serves the 
purpose of tracking faces in video. To add as an 
enhancement to the existing tracker we plan to 
give support for face recognition. In face 
recognition it would be possible to identify a 
particular face from a group of people. This can be 
done by cross checking the detected faces with 
the face to be recognized which we have in our 
database, and then tracking the matching face. 
This can be of high importance in video 
surveillance and security as it helps to recognize 
a person among a group of people and track his 
movement. Regarding the performance 
improvement, we are planning to port the particle 
sorting step to GPU, which we hope will give 
considerable performance gain. 
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