
high performance
medical
reconstruction
using stream
programming
paradigms

QuEST Global

This Paper describes the implementation and results of CT reconstruction using Filtered Back
Projection on various stream programming paradigms.

0.1 Abstract

0.2 Introduction

0.3 Filtered Back Projection

0.4 CUDA Programming Mode

0.6 Implementation of FBP

0.7 References

0.5 Cell Programming

01

01

02

03

 04

 05

 04

© 2015, QuEST Global Services

Abstract

This paper describes the implementation and

results of CT reconstruction using Filtered Back

Projection on various stream programming

paradigms.

Key words— Filtered Back Projection, CUDA,

Cell.

I. Introduction

The complexity of Medical image reconstruction
requires tens to hundreds of billions of
computations per second. Until few years ago,
special purpose processors designed especially
for such applications were used. Such
processors require significant design effort and
are thus difficult to change as new algorithms in
reconstructions evolve and have limited
parallelism. Hence the demand for flexibility in
medical applications motivated the use of stream
processors with massively parallel architecture.

Stream processing architectures offers data
parallel kind of parallelism. In data parallelism, a
set of operations are performed on large amount
of data in a parallel fashion. Many of the
reconstruction algorithms are high suitable for
this data parallel paradigm. The central idea
behind stream processing is to organize the
application into streams - set of data - and
kernels - a series of operations applied to each
element in the stream.

There are several stream processors
commercially available. Here in this paper, we
consider two emerging processors – Graphical
Processing Unit (GPU) [2] and Cell Processors
[3] for benchmarking our reconstruction
application provide specific instructions to allow
application developers to tag kernels and/or

High Performance Medical Reconstruction using Stream Programming Paradigms

High Performance Medical Reconstruction using Stream Programming Paradigms

1

streams.

GPUs are designed for high end game and 3D
simulation application. They are massively
parallel architectures with large amount of
arithmetic processing units. Programming a GPU
requires the knowledge of graphics pipeline
architecture. But off late the advent of General
Purpose on GPU (GPGPU)[4] lead to design of
tools based on common programming languages.
Cell Processors are designed to bridge the gap
between conventional desktop processors and
more specialized high-performance processors,
such as GPUs. Cell processor can be split into
four components: external input and output
structures, the main processor called the Power
Processing Element (PPE) eight fully-functional
co-processors called the Synergistic Processing
Elements.

GPU can be programmed using Shader
languages of Graphical APIs such as OpenGL [2]
and DirectX [5], which requires knowledge in
Graphics architecture. Then there are C style
programming languages such as CUDA [5], which
requires minimum or no background in Graphics.
As the Cell processor is general purpose
processor, languages currently available are
similar to C programming.

In this paper we consider the X-ray beam
computed tomography (CT) reconstruction of
2Dimage/3D image from 2D projections as or
image reconstruction example. The 2D/3D image
reconstruction is a very demanding computational
task. The reconstruction from projections is done
using Filtered Back Projection [1] with time
complexity—O (N4) where N is the number of
detector pixels in one detector row.

In the rest of the paper we give an overview of the
programming tools used for GPU and Cell
Processor. Also we describe the implementation
of Filtered Back Projection using some of these
programming paradigms. We conclude with the

© 2015, QuEST Global Services

2

paper by benchmarking results with
conventional processors.

II. Filtered back projection

Filtered Back Projection is a conventional
technique used for CT reconstruction for 2D
Fan Beam Data and 3D Cone Beam Data.
Filter Back Projection can be divided into (1)
Filtering and (2) Back Projection

Algorithm of Discrete FBP

The following is the pseudo algorithm of the FBP

The computational complexity of the Filter Back
Projection (FBP) is biquadratic. To reconstruct a
volume of size 400 x 400 x 240 images from 360

projections requires floating point operations of
the order of 109 than available with a normal
processor. The most computation-intensive step
of the Filtered Back Projection is back projection.
Roughly 97% of the operations involve the back
projection when reconstructing the images from
the projections.

III. CUDA

Traditionally GPGPU applications were
developed using Graphical APIs and their
shading language which requires knowledge of
Graphics Pipeline. Moreover these APIs exposed
very little of the underlying hardware. CUDA,
designed from the ground-up is an efficient
general purpose computation on GPUs. It gives
computationally intensive applications access to
the tremendous processing power of the latest
NVIDIA GeForce 8 GPUs through a C-like
programming interface. The GeForce 8 series
GPUs have up to 128 processors running at 1.5
GHz and up to 1.5GB of on-board memory. It
uses a C-like programming language and does
not require remapping algorithms to graphics
concepts. CUDA exposes several hardware
features that are not available via the graphics
API. The most significant of these is shared
memory, which is a small (currently 16KB per
multiprocessor) area of on-chip memory which
can be accessed in parallel by blocks of threads.
This allows caching of frequently used data and
can provide large speedups over using textures
to access data. Combined with thread
synchronization primitive, this allows cooperative
parallel processing of on-chip data, greatly
reducing the expensive off-chip bandwidth
requirements of many parallel algorithms. This
benefits a number of common applications such
as linear algebra, Fast Fourier Transforms, and
image processing filters. The current generation
of GPU from NVIDIA has support for IEEE single
precision. Double precision support will be
available in the next generation towards the end
of the year. There are however several fields in
which significant results can be obtained with
single precision: image and signal processing
and some numerical methods like pseudo
spectral approximation are just few examples

High Performance Medical Reconstruction using Stream Programming Paradigms

High Performance Medical Reconstruction using Stream Programming Paradigms

//Filter the projection images along
horizontal lines
For Each Projection
For Each row of the Projection
For Each col of the Projection
Perform the convolution. (Filter) row
wise
// Perform the back projection along the
projection rays
For each Filtered Image
Get the angle of Projection for this
filtered image
For each output Image of the
reconstructed volume.
Get the angle of Projection of this
image.
Calculate increment factor U using
angle for indexing (look up) into the
Filtered Image and also weight
calculation.
For each row of the output image
For each column of the output image
Lookup the image at calculated index.
Accumulate the output with the 1/U2

© 2015, QuEST Global Services

3

CUDA Programming Mode
l
The programmer writes a serial program that
calls parallel kernels, which may be simple
functions or full programs. A kernel executes in
parallel across a set of parallel threads. The
programmer organizes these threads into a
hierarchy of grids of thread blocks. A thread
block is a set of concurrent threads that can
cooperate among themselves through barrier
synchronization and shared access to a memory
space private to the block. A grid is a set of thread
b locks that may each be executed
independently and thus may execute in parallel.
When invoking a kernel, the programmer
specifies the number of threads per block and
the number of blocks making up the grid. Each
thread is given a unique thread ID number
threadIdx within its thread block, numbered 0, 1,
2, ..., blockDim - 1, and each thread block is
given a unique block ID number blockIdx within
its grid. CUDA supports thread blocks containing
up to 512 threads. For convenience, thread
blocks and grids may have one, two, or three
dimensions, accessed via .x, .y, and .z index
fields.

FBP Implementation

The FBP implementation of CPU consists of
reading the image files and its configuration files
containing the information such as angle of
Projection, geometric parameters for Region of
Interest (ROI), computing the Filter mask and
the geometric shape of the output image. The
compute intensive portions like filtering and back
projection, implemented in GPU, are packed in
two different kernels. Prior to the kernel
execution, the input data is copied to the GPU's
device memory. As this data is required for both
filter kernel as well as back projection kernel, it is
allocated in the global memory of the device,
which helps to avoid copying multiple times. In
order to achieve high level of parallelism, size of
blocks and threads in the block are selected
appropriately. We divide the data into several 1D
block and threads.

The input image data is stored and accessed via
global memory. 1D convolution mask as well the a
row input data, which is used repeatedly used for
convolving each of row of image is stored and
accessed via shared memory than from the global
memory. This will significantly reduce memory
bandwidth which affects the performance. Data
reuse is high with in a thread block and hence a
block of threads are loaded into the shared
memory. Data stored in the shared memory are
declared as volatile variable in order to disable to
compiler optimization for reading and writing to
shared memory as long as previous statement is
met [6]. This is yet another optimization strategy to
reduce the memory bandwidth.

The back projection algorithm contains
computations involving several array look ups.
Unlike in CPU, array look ups in GPUs are costlier.
Hence they are replaced with index based
computations. This is done in order to exploit
arithmetic efficiency of GPU. Compared to filtering
operation, the data reuse is not that high in back
projection, which makes the shared memory
usage inefficient in this situation. Here texture look
up of the filtered image is the found to be better
choice than accessing the data stored in the
shared memory. This is because texture memory
is spatially cached. More over back projection
computation performed on large amount of data
cannot be stored in the shared memory whose size

High Performance Medical Reconstruction using Stream Programming Paradigms

High Performance Medical Reconstruction using Stream Programming Paradigms

© 2015, QuEST Global Services

Results

The Filtered Back Projection algorithm was
tested on NVIDIA 8800 GTS and Intel Pentium D
processor with 3.2 GHz hardware. The table 1
below shows the results for the filtered back
projection for an Input Image of size 960 x 768 x
360

Table 1 : Comparison of the time taken for
execution of FBP on Intel Pentium D (3.2 GHZ, 2
GB RAM) and the NVIDIA 8800 GTS.

IV.Cell Programming

System Overview

The Cell Broadband Engine is a heterogeneous
multiprocessor containing 1 PowerPC
Processing Unit (PPU), 6 Synergistic Processing
Units (SPUs) and a high bandwidth element
interconnect bus. There is support for performing
data transfers concurrent to instruction
execution. The Cell processor achieves
efficiency in power consumption because of the
distinction between the PPU (that is specialized
for control operations and runs the OS) and the
SPU (that is specialized for data intensive
operations). There is support for vectorization on
the PPU and the SPU that can result in up to 4
single precision floating point operations in one
cycle. The Cell based machine chosen for
implementation of our application is the Play
Station 3 (PS3), running the Yellow Dog Linux
distribution. Programming is done in C, using C
extensions for the Cell platform. GNU C
Compiler for the SPU and PPU platforms are
used.

Cell Programming Model
The Cell processor supports a stream

4

programming model, which involves the
identification of an appropriate kernel function
and the execution of the chosen kernel function
on all the data elements. The latency of
execution is reduced by exploiting the single
program multiple data (SPMD) paradigm for
executing the same kernel function concurrently
on multiple data elements. In this case, the PPU
spawns multiple threads and schedules these
threads for execution in the 6 SPEs.

The synchronization of threads and transfer of
data are controlled from the PPU program.
Double buffering is used to allow data transfers
from the PPU to SPU(s) concurrent to program
execution. In order to minimize the latency of
memory access, the software cache in SPUs is
utilized. Data transfers from the PPU to SPUs
and vice versa are accomplished by DMA and
message passing. Vectorization of PPU and
SPU code is performed for further increase in
data parallel execution. Wherever possible,
optimized library functions for the cell processor
are invoked for increased execution efficiency.
The code for execution on the PPU and SPUs is
developed separately. The executables for the
SPUs are embedded within the main PPU
executable and can be invoked from within PPU
functions as a separate thread, specifying the
name of the executable, the SPU on which it has
to be executed and other relevant parameters.

Implementation of FBP

The filter and backprojection functions that have
to be evaluated corresponding to every input and
output voxel respectively, are considered as the
kernel functions. Filtering involves the
convolution of a one-dimensional filter with each
row of input slices. Back projection involves
evaluation of weights for each pixel, evaluation
of the offset in the filtered image and determining
the contribution of the corresponding value
towards the back projection of the corresponding
pixel. Due to limitations in RAM for the Cell, the
input images are processed one at a time,
accumulating the weighted contribution of each
input image to output voxels.

High Performance Medical Reconstruction using Stream Programming Paradigms

High Performance Medical Reconstruction using Stream Programming Paradigms

© 2015, QuEST Global Services

5

The issues encountered on the Cell processor
include limitations in RAM and SPU local
memory as well as issues in restructuring the
code for optimal performance on the Cell BE
processor. There is an increased programming
overhead because the programmer is
responsible for management of data transfer
and buffering between the PPU and SPUs,
synchronization of execution of the PPU and
SPUs as well as because of constraints on data
alignment, limitation on the size of data that can
be transferred by DMA and endian issues.

The block diagram in Figure 3 depicting the
implementation of FBP on Cell is shown in
Figure 3. The Init block corresponds to a one-
time initialization function for the system.
Following initialization, the image is loaded onto
the main memory of the PPU. The filter kernel is
executed on the 6 SPUs. Each SPU operates on
a different region of the image. The filter kernel
function is executed once for each pixel and is
invoked multiple times to complete the
processing of a block corresponding to an SPU.
Data transfers accomplished using DMA are
initiated as required by the application.
Constraints in SPU local memory impose that
the filtered image be transferred back to the PPU
memory. Since double buffering is used, there is
no overhead for data transfers.

After completion of filtering for the input image,
backprojection is performed. All necessary
output voxels are updated with weighted values
of corresponding input pixels from the current
image. After completion of processing of the
current image, the filtering and backprojection
operations are performed for all remaining input
images, accumulating the output voxels for
every input image. Following completion of FBP
for all input images, the output is written onto raw
image files.

High Performance Medical Reconstruction using Stream Programming Paradigms

High Performance Medical Reconstruction using Stream Programming Paradigms

Figure 2: FBP as implemented on the Cell BE

Results

The FBP code is implemented on the Play
Station 3 (PS3), which consists of a single Cell
processor, 256 MB RAM and 3.2 GHz clock
speed. The data used for testing the system is
artificial CT data corresponding to the 3
Cylinders dataset. The performance on the Cell
processor is compared to that on an Intel
Pentium D processor running at the same clock
speed and having a RAM of 2 GB. The number of
input images is 360 and the dimension of each
input image is 768 x 960. Following
backprojection 240 output images of dimension
400 x 400 voxels are obtained. Table 2
summarizes the results obtained.

Table 2: Comparison of the time taken for
execution of FBP on Intel Pentium D (3.2 GHZ, 2
GB RAM) and the Cell BE (3.2GHz, 250MB
RAM) processors.

This is the first implementation of FBP on the
P S 3 m a c h i n e . O t h e r C e l l b a s e d
implementations have used the Cell Blade,
which contains 2 Cell BE processors having 2
PPEs, 16 SPEs and 2GB RAM. The
performance obtained with such a system is
reported to be 14.16x [7].

References
[1]. F. Nattered, The Mathematics of
Computerized Tomography, John Wiley & Sons,
2 editions, 1986.
[2]. http:// www.opengl.org
[3]. http://www.microsoft.com/directx
[4]. http://www.gpgpu.org
] .

© 2015, QuEST Global Services

6

High Performance Medical Reconstruction using Stream Programming Paradigms

High Performance Medical Reconstruction using Stream Programming Paradigms

[5]http://www.nvidia.com/object/cuda_home.h
tml
[6]. NVIDIA CUDA Programming Guide.
[7] .Programmer 's Gu ide - Ce l l BE
P rog ramming Tu to r i a l , h t t p : / /www-
01.ibm.com/chips/techlib/techlib.nsf/techdocs/
FC857AE550F7EB83872571A80061F788/$fil
e/CBE_Programming_Tutorial_v3.0.pdf
[8]. M. Knaup, S. Steckmann, O. Bockenbach
and M. Kachelrieß. Tomographic image
reconstruction using the Cell broadband
engine (CBE) general purpose hardware.
P r o c e e d i n g s E l e c t r o n i c I m a g i n g ,
Computational Imaging V, SPIE Vol 6498,
64980P 1-10, January 2007.

© 2015, QuEST Global Services

www.quest-global.com

 © 2015, QuEST Global Services

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

