
HPC
platform options:
Cell BE and GPU

QuEST Global

As data processing requirements increased with new applications, new processing technologies
like Stream computing and parallel execution came into being.

 Anoop Thomas

0.1 Overview

0.2 Cell Broadband Engine (Cell BE)

0.3 Cell Development

0.4 Graphics Processing Unit (GPU)

0.6 Conclusion

0.7 References

0.5 GPU based Development

01

01

02

03

 05

 05

 04

© 2015, QuEST Global Services

HPC Platform options: Cell BE and GPU

HPC Platform options: Cell BE and GPU

1

 Overview

 As data processing requirements increased with new applications, new processing technologies
like Stream computing and parallel execution came into being.This write‐up briefly compares two

competing performance architectures for data parallelism – Cell Broadband Engine (Cell BE™ in short)
and the GPU (Graphics Processing Unit).

Cell Broadband Engine (Cell BE)

 Evolution and Roadmap

 The Cell BE™ Processor architecture was developed in collaboration between IBM, Sony and
Toshiba. Development started in 2001 and first set of products based on this architecture started
appearing in 2005. The Cell processor architecture primarily consisted of one PowerPC based core
called “PowerPC Processing Element” (PPE in short) and 8 “Synergistic Processing Element” (SPE in
short) cores. The PowerPC core is the core on which the OS is run, and the SPEs were dedicated for
data processing, with special instructions for numerical/mathematical operations. SPEs lack General
purpose instructions or direct access to main memory, because of this, OS cannot be run on this core.

 The Cell processor connects to fast XDR RAM memory to which only the PPE has direct
access.There would be special programs for both PPE and SPE cores, since the instructions for these
are different. The scheduling of programs on the various SPE in the CPU is managed by the OS or the
PPE program running currently. SPEs can load/store data from main memory using fast DMA. Each
SPE has 256Kbytes of static local RAM associated with it. Any data needs to be fetched into this memory
for processing. After processing, the resultant data may be transferred back to main memory using DMA.

© 2015, QuEST Global Services

2

 The Cell CPU is designed to operate at up to
4GHz clock speeds. It is manufactured using the
90nm SOI process; more recent variants use the
65nm fabrication technology. The raw compute
power of Cell CPU is rated at 260 Gigaflops
(Single Precision). The architecture is scalable to
increase/reduce the count of the PPEs or SPEs
in the processor die to meet specific computing
needs as required.

 The first variant of the Cell processor was
used in the Sony PlayStation™ 3 Gaming
console, as the main CPU. This variant consists
of one PPE and 6 SPEs with a clock speed of
3.2GHz. One SPE was disabled and another
reserved for system tasks by the embedded OS.
A more powerful variant of the
CPU was used widely in the IBM QS blade server
series. Toshiba uses a custom variant of the Cell
CPU with only 4 SPEs as a coprocessor in their
range of laptop computers, for enhanced
graphics processing.There are many more
applications using the Cell CPU, as add‐in

boards for data processing etc.
However, the main use of the architecture was in
the Sony PS3 game station and IBM blade
servers. IBM introduced a more powerful version
of the Cell CPU in 2008, with 10 times double
precision compute power (102 Gigaflops) than
before, targeted at scientific, data intensive
applications. This variant was
called the PowerXCell 8i™.

 The Cell CPUs are also used in some
powerful supercomputers of the time, including
IBM Road Runner and in many new mainframe
computers from IBM. Certain consumer
electronic products are also in the market,using
Cell processor. Most notable among them is the
Cell TV from Toshiba, which uses Cell processor
to accelerate the HD decoding and preview
feature in its HDTV models.

 There are many Linux distributions that
support the Cell CPU, with full range of
applications that take advantage of the Cell
processor’s computing power. This includes Red
Hat Fedora, Yellow Dog Linux etc. Since the Cell

is based on PowerPC core, most PowerPC based
Linux distributions run on Cell
systems.

 In November 2009, IBM stated that it has
discontinued development of the Cell processor
model with 32 SPE cores. But IBM also stated that
the cell BE architecture will be used in the next
generations of PowerPC based CPUs from IBM

Cell Development

 Development for the Cell platform could be
done using multitude of tools and SDKs released
by different vendors, including IBM, Sony,
Mercury and others. Primary OS running on Cell
systems would be Linux, so most of the tools and
compilers available for Cell development are
based on Linux/gcc tool chain.

 IBM has released the Cell SDK for developing
applications that take advantage of the Cell Be™
architecture. The IBM xlc compilers and
associated tools help in profiling and debugging
Cell based applications under Linux. The SDK
supports Eclipse as an IDE for Cell development.

 Sony has its own proprietary SDK for
developing games targeting the PlayStation™ 3.
The Ps3 also supports loading Linux onto it, after
which the tools from IBM can be used for
developing Linux applications targeting the cell
processor. Mercury is the key development kit
supplier for Cell based systems which provides
their own SDKs, tools and analyzers for
developers.systems which provides their own
SDKs, tools and analyzers for developers. Add‐in

boards with Cell CPU based development kits
can be procured from Mercury.

 Most Linux distributions running on the Cell
CPU do not drive the SPE units. The program that
wants to use the SPE will have to schedule the
SPE kernels/programs for execution on the
available SPE units in the system, and move the
data efficiently to achieve maximum processing
throughput. In effect a scheduler has to be
implemented by the application developer in an

HPC Platform options: Cell BE and GPU

HPC Platform options: Cell BE and GPU

© 2015, QuEST Global Services

3

efficient manner (in the PPE
program) to achieve the maximum output. This
means optimum loading of the SPE cores, and
associated memory and local data registers.
Since this is an additional overhead and more
difficult to tune for performance compared to
more conventional type of development on other
type of systems (like x86), Cell based application
development is considered to be difficult and
cumbersome.

Graphics Processing Unit (GPU)

Roadmap and Future

 In the early 80s and 90s, the PC subsystem
used display coprocessors for the sole purpose
of displaying graphics/text on the video unit. The
functionality of these units were limited to the
acceleration of 2D graphics including raster
operations such as drawing shapes, rendering
text etc. on the screen. With the popularity of PC
gaming increasing in 2000, more and more PC
based 3D Games started appearing in the
market, which was demanding in 3D graphics
processing. Display board/chip vendors started
adding 3D processing capability to the graphics
chips to accelerate 3D games and some
professional 3D applications such as
AutoCAD™ and 3D studio MAX™. OpenGL was
primarily used for accelerating 3D graphics; later
on DirectX™ was introduced by Microsoft.

 Prior to 2001, with OpenGL 1.5 and
DirectX™ 7, display chips had only fixed graphic
functions implemented inside it. With DirectX™ 8
and OpenGL 2.0 specifications, vertex and pixel
shaders were introduced, which made 3D
graphics more flexible by making the 3D
rendering process programmable.Developers
could visualize effects such as shadows and
custom lighting etc. The first 3D graphics
accelerators supporting shaders were the real
GPUs. These chips could execute the shaders in
parallel on multiple pixels/vertices to be
rendered on screen. As the games and 3D
applications got more demanding, the GPU
vendors (nVIDIA and ATI were the most
prominent at the time) increased the processing

capability of their GPUs accordingly.

 Today’s GPUs exceed the typical CPU in
raw processing power. They also provide better
performance/watt and performance/cost. These
achievements were possible by new fabrication
technology, enabling more and more transistors
to be packed into smaller chip dies. Although
targeted at 3D gaming in general, the processing
power of GPUs today attracted many into running
general purpose computations on GPUs to
achieve better throughput. This paradigm is now
known as ‘GPGPU’.Earlier the GPGPU
developer could use only 3D graphics APIs such
as OpenGL and DirectX™ to program them.
Today GPGPU frameworks such as nVIDIA
CUDA™ and OpenCL are available to make GPU
computing/programming easy.

 The major GPU vendors in the PC industry
are nVIDIA and ATI. Both have their own GPU
offerings for consumer, professional and
Industrial graphics markets. They also provide
developer frameworks for GPGPU computing
that leverage the computing power of their GPUs.
nVIDIA has released the CUDA™ SDK and toolkit
w h i c h s u p p o r t s t h e i r
GeForce™/Quadro™/Tesla™ Range of GPUs
and ATI has their Stream SDK targeting ATI
GPUs. Common standards for Stream computing
such as OpenCL have evolved during the
meantime, which is supported by both these GPU
v e n d o r s . M i c r o s o f t h a s i n t r o d u c e d
DirectCompute API, which takes advantage of the
massively parallel GPUs for compute intensive
applications. The current GPU models offer up to
2+ Teraflops of raw computing power.

HPC Platform options: Cell BE and GPU

HPC Platform options: Cell BE and GPU

© 2015, QuEST Global Services

4

 Current GPU models from ATI include their
R V 8 7 0 b a s e d
Radeon™/FireGL™/FireStream™ GPUs that
support OpenCL and DirectCompute APIs.
Programming can be done by using the SDK
released by ATI. The current series of GPUs from
nVIDIA are the GT200 architecture based
derivatives, in GeForce, Quadro and Tesla
product ranges targeted at the consumer,
professional and Industrial market segments
respectively. These GPUs are built on CUDA™
technology for GPGPU computing. nVIDIA offers
the C for CUDA™ language for taking advantage
of the computing power of these GPUs. CUDA™
SDK and toolkit are most popular among
GPGPU programmers worldwide.

 nVIDIA recently unveiled the latest CUDA™
architecture codenamed ‘Fermi’. This new
architecture based products are targeted at GPU
computing. Fermi based GPUs will start shipping
by late Q1 2010, according to nVIDIA. Fermi
based GPUs are targeted at HPC applications,
with features like
ECC memory support and on‐device debugging.

To complement the new Fermi GPUs, nVIDIA is
developing Nexus – a debugging tool that can
debug code inside the actual device, which was
not possible earlier. New CUDA™ SDK with
updated features and support for Fermi based
GPUs is under
development and will be released alongside the
new GPU variants.

GPU based Development

 There are many options for developing GPU
based applications. The oldest method is to use
Graphics APIs such as DirectX™ and OpenGL.
Graphics programmers will find this easy, as they
are more adept to this. This causes the need for
learning 3D APIs to implement GPGPU
applications. Then there are GPGPU
frameworks such as ATI Stream, nVIDIA
CUDA™. ATI stream was discontinued and ATI
later adopted OpenCL for programming their
GPUs.

 nVIDIA released CUDA™ SDK/Toolkit along
with their GeForce™ 8800 (G80) architecture in
November 2006. The C for CUDA™ language is a
high level language similar to C, and is easily
learned by most developers. nVIDIA has been
updating their CUDA™ SDK and tools to support
recent GPU models, with enhanced features and
compute power (G92, GT200 based GPUs).
CUDA™ SDK and toolkit supports both
Windows™ and Linux (Major desktop
distributions such as Red Hat, SUSE, Ubuntu,
FreeBSD etc).

Comparison

 • Max throughput: The GPU wins here since it
offers at least 2‐3 times performance than a Cell

CPU. This is ref lected in real world
tests/applications too.
 • Performance per watt: The GPU scores here
over the Cell CPU. Even though the total power
consumption of a GPU is much more than that of
the cell, the FLOPS offered is much more times
than the cell.
 • Performance‐cost ratio: The GPU outscores

the Cell in most scenarios. The cheapest Cell
system available is the Sony PlayStation™ 3 (Cell
CPU with 6 SPEs, clocked at 3.2GHz) which will
cost $400, and a typical GPU like the nVIDIA
GeForce™ GTX260 will cost $200 (~900
Gigaflops).
 • Developer friendliness: It’s a tie. Earlier
(before CUDA™), when GPU frameworks were
not available, OpenGL or DirectX™ were the only
options for GPU computing, and programmers
had to learn Graphics to do GPGPU. In the case of
Cell, the hardware architecture makes the
parallelization of existing serial code difficult. Add
to that the developer has to take care of the SPE
scheduling and data transfer activities, in an
optimized fashion to achieve best performance of
the cell, the FLOPS offered is much more times
than the cell.
 • Cost factor: GPU wins over the cell here.
As mentioned above, the cheapest cell system is

HPC Platform options: Cell BE and GPU

HPC Platform options: Cell BE and GPU

© 2015, QuEST Global Services

5

the PS3 ($400), then the Mercury development
board ($8000) and then an IBM blade PC
($10,000). A GeForce™ GTX 260, providing 900
Gigaflops of computing power is available for
$200.

 • Data transfer latency: Since the GPU is
available as an Add‐on card which attaches to

the PC using the PCI‐Express interface; the data

transfer speeds are not as fast like a CPU
accessing the RAM. The speed is limited to that
of the PCI‐Express interface. In the case of Cell,

the PPE has direct access to the XDR RAM, and
the SPEs use fast DMA for data transfer, which is
similar to the PPE memory access speeds.
Hence the data transfer latency is near‐zero.

The Cell outscores the GPU here.
 • Developer tools: It is a tie in this aspect.
Apart from CUDA™ and OpenCL, there are no
major development options for GPUs. For the
Cell platform, IBM provides the Cell SDK and
Eclipse can be used as the development IDE.

Conclusion

 Considering all of the above aspects, the GPU
has a clear advantage over the Cell platform.
Most importantly, looking at the Cell roadmap
indicates that the Cell family of processors won’t
be developed further, although current designs
will be used in future IBM products. The GPU has
got a clear roadmap laid out, with strong
emphasis on HPC and compute oriented
workloads, apart from the traditional 3D=
gaming/professional applications market.

 In light of the current circumstances, the
GPU seems to be the platform of choice for
HPC/compute intensive applications today. But
this does not mean that the Cell BE is a
non‐performer –

It still is a good option for certain type of
applications/Workloads which are better suited
to itsarchitecture and/or not portable to GPU.

References

 1. IBM Cell developer documentation
[http://www.ibm.com/developerworks/power/cell/
downloads.html]

 2. nVIDIA CUDA developer page
[http://www.nvidia.com/object/cuda_get.html]

 3 . ATI GPU deve loper cent ra l
[http://developer.amd.com/GPU/Pages/default.a
spx]

HPC Platform options: Cell BE and GPU

HPC Platform options: Cell BE and GPU

© 2015, QuEST Global Services

www.quest-global.com

 © 2015, QuEST Global Services

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

